17th U.S.-Japan-New Zealand Workshop

Vibration Control of RC High-rise Building with Soft-story

Tsubasa Tani TAISEI Corporation

- 1.Background
- 2.Our Newly Developed System
- 3.Cyclic loading test
- 4.Shaking table test
- 5.Conclusion

1.Background

2.Our Newly Developed System

3.Cyclic loading test

4.Shaking table test

5.Conclusion

Distribution of seismic intensity of Tohoku earthquake 2011

Distribution of assumed seismic intensity of Nankai

Assumed seismic intensity of Nankai earthquake

Purpose : To provide a safety and security living environment

1.Background

2.Our Newly Developed System

3.Cyclic loading test4.Shaking table test

5.Conclusion

Composition of the system

Low stiff frame

It parries earthquake effectively like base isolation

Shin-bashira effect and leverage effect

- Shin-bashira effect \Rightarrow Integration of lower stories
- Leverage effect \Rightarrow Amplifying damper deformation

1.Background
2.Our Newly Developed System
3.Cyclic loading test
4.Shaking table test
5.Conclusion

Difficult point in the design of the system

Deformation and stress of bottom of walls

Experiment of rotary deformation of laminated rubber

Loading equipment

Experiment of rotary deformation of laminated rubber

Contact pressure : 1MPa

Experiment of rotary deformation of laminated rubber

Contact pressure : 30MPa

Loading equipment

Experiment of wall-damper connection

1.Background2.Our Newly Developed System3.Cyclic loading test4.Shaking table test5.Conclusion

Specimen 2: Damper

```
Normal model + 4 dampers
Additional damping factor : 2.0%
```


Specimen 3 : Proposed

Normal model + 4 dampers + Shear-walls - Ruminated rubber Natural period : 1.46s Additional damping factor : 11.7%

Ruminated rubber $\phi 300 \times 1$

Shaking table test using simple model

Input : White noise

Normal

Damper

Proposed

Shaking table test using simple model

1.Background
2.Our Newly Developed System
3.Cyclic loading test
4.Shaking table test
5.Conclusion

A new vibration control system was presented

- This system can reduce the maximum story drift In comparison with conventional vibration control building.
- Laminated rubber bearing has a high durability against rotary deformation.
- Wall-damper connection has a greater stiffness than oil-damper

Thank you for your attention