Resilience Challenges and Opportunities

Mary C Comerio Professor of the Graduate School University of California, Berkeley

17th US-Japan-New Zealand Workshop 12-14 Nov. 2018 The Improvement of Structural Engineering and Resilience

Understanding Resilience

- Broad Concept:
 - The capacity of communities to survive, adapt and grow, now matter what kind of chronic stress or acute shock they experience
- Buzzword:
 - Every city, every government agency, every academic wants to be seen "doing something about it"
- Components:
 - Research
 - Policy
 - Implementation

The Resilience Research Questions

For the technical community:

- How do we evaluate the performance of the whole building and design infrastructure systems (both existing and new) to significantly reduce losses in order to simplify and shorten recovery time?
- How do we model the interdependencies in systems to accurately reflect long term performance?

Lessons from CA, Japan & NZ: Research Investments

- Research Investment in the last 30 years
 - Focus on Performance Based Design Methods, Testing, Data systems, Modeling and Geo-mapping
- US: PEER, MCEER, and ATC
- Japan: E-Defense, Govt. and Corporate Support
- New Zealand: QUAKE CoRE. Quake Center & Resilience to Nature's Challenges

Lessons from CA, Japan & NZ: Public Investment in Seismic Upgrades

• Billions Invested Beyond Recovery:

- Infrastructure Upgrading Investments
- Retrofit of Public Buildings and Enhanced Seismic
 Codes for New and Existing Buildings
- Improved Hazard Maps
- Resilience Planning

Christchurch and National Geotechnical Database

Tonkin + Taylor engineer Dr Sjoerd van Ballegooy

Infrastructure Investments Beyond Reconstruction

Freeway Bridges and Overpass

Transit/Water Upgrades

Miyagi Coast Roads/Seawalls

Building Design and Regulations

Retrofits Public Buildings, UC Disaster Resistant University

 US: 1997 Seismic Code and Code for Existing Buildings; PBEE Methods
 Japan: National Building Standards and City Planning Laws, Land Readjustment Law
 New Zealand: Introduction of Eq. Prone Buildings and % New Building Standard ratings

Hazards Maps and Resilience Planning

Eduin M. Lee, Mayor Naomi Kelly, City Administrator

ALL Scenarios Project Heavy Losses

- Scenarios in all countries show staggering losses despite investment efforts
- California Example:
 - \$80-\$100 Bil Losses
 - Buildings and Unimproved Infrastructure
 - 150-200,000 Households
 Displaced
 - US: Only 10% with Insurance

\$100 – 250 million

Limit Losses & Reduce Recovery Time: Model Whole Buildings, Systems,

Slide: Prof. Greg Deierlein, Stanford Univ.

Essential Elements of Resilience

SAFE & FUNCTIONAL PHYSICAL ENVIRONMENTS

- Infrastructure
- Building for Repair-ability
- Geotechnical and Hazard Data in Land Use Planning

EQUITY, SOCIAL & ECOLOGICAL RESPONSIBILITY

• Serve the community everyday, and be prepared for limiting losses in future disasters

A Lesson From Estonia

A secure data exchange for residents, public institutions, and private companies

Why Buildings Matter (Both Systems & Functions)

Why Hazards and Geo Data Matters to Land Use Planning

NEED Parcel Based Land Use Data and Regulations

Conclusion

Research Challenges as Opportunities A Realistic Resilience Framework

SAFE & FUNCTIONAL PHYSICAL ENVIRONMENTS RESEARCH

- Infrastructure Systems Interoperability
- Building for Repair-ability and Function
- Hazard and Geotechnical Data for Land Use POLICY AND IMPLEMENTATION: COMMUNITIES THAT SERVE INHABITANTS DAY TO DAY AND PERFORM WELL IN DISASTERS