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 Perform a series of case studies on 
different buildings after the 2011 Tohoku 
Tsunami in order to validate proposed 
tsunami load characterization procedures 
for structural design.
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 The Tohoku Tsunami presented a range of structural 
loading conditions and effects.  

 Focus is on the following:
 Hydrostatic Forces: 

 Unbalanced Lateral Forces
 Buoyant Forces
 Additional Loads on Elevated Floors

 Hydrodynamic Drag Forces: 
 Lateral Pressures of Tsunami Surge

 Debris Damming
 Tsunami Bore Forces
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1. Estimate the loading type and failure mechanisms for 
selected structures from field and video observations.

2. Determine/estimate inundation depth and surge/bore 
velocity from video, field observations and documentation.

3. Theoretically quantify loading on structures.

4. Perform non-linear structural analysis of damaged 
structures to compute damage based on the theoretical 
loading.

5. Compare computed damage to observed damage from field 
observations and LiDAR surveys to provide bounds for 
validation of theoretical loading.
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Hydrostatic Forces – Buoyancy of 
Warehouse Building - Onagawa
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 Total weight estimated at 9000 kN
 Floated due to sealed refrigerated space 

on ground floor
 Lifted off foundations (piles with minimal 

tensile capacity) at inundation depth of 
around 7 m
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Hydrodynamic Forces – Steel 
Structure - Onagawa
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 Flow velocity = 7.5 m/s
 Inundation = full height of structure
 Yielding/Plastic hinging in columns
 60% blockage of projected face of 

structure sufficient to yield the columns 
based on hydrodynamic force equation
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 Flow velocity = 7.5 m/s
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 Pressure sufficient to fully yield larger 

wall segments.
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smaller wall segments but not 
completely fail them.
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Hydrodynamic Forces – Steel 
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 Two story warehouse
 Flow velocity = 5.5 m/s
 75% walls remained at 

ground floor and 50% 
remained at 2nd floor

 Foundation anchor bolt 
shear strength 
exceeded at 5.6 m 
inundation depth

 Building translated and 
rotated about its 
longitudinal axis.
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Tourist Center –
Takada Matsubara 
Building

Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata

Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata



Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata

Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata



Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata

Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata

 Flow velocity 
= 7.5 m/s

 Inundation depth 
= 10.5 m

 Combination of 
hydrostatic and 
hydrodynamic 
forces

 Force sufficient to 
completely fail wall 
well beyond 
ultimate strength

 Flow velocity 
= 7.5 m/s

 Inundation depth 
= 10.5 m

 Combination of 
hydrostatic and 
hydrodynamic 
forces

 Force sufficient to 
completely fail wall 
well beyond 
ultimate strength 0

500

1000

1500

2000

2500

3000

3500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

To
ta
l W

at
er
 P
re
ss
ur
e 
(k
N
)

Maximum Transverse Wall Displacement (m)

First Yield at Base of Wall

First Yield at Top and Upper Half of Side 
Supports of Wall 

First Yield of Horizontal Beam at Ends

First Yield at Mid‐Span of Mid‐Height Beam 4.7m

2.7m

1.62 m

Concrete Cracking at Base of Wall

First Yield at Base of Wall

First Yield at Top and Upper Half of Side 
Supports of Wall 

First Yield of Horizontal Beam at Ends

First Yield of Bottom Half of Side Supports of Wall

First Yield at Mid‐Span of Mid‐Height Beam 4.7m

2.7m

1.62 m

Concrete Cracking at Base of Wall

2
2
2

1
2

2
1)(

2
1 bhvChhgbF sdsh  



Hydrostatic and Hydrodynamic Forces -
Tourist Center - Rikuzentakata
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 Forms membrane prior to complete failure Forms membrane prior to complete failure
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Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant

Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant



Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant

Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant



Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant

Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant



Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant

Bore Impact Forces – Minami Gamou
Wastewater Treatment Plant







  3

4
3

1 )(
2
1 22

jjjjbsb vhgvhghF 

Theoretical Bore Force (Robertson and Packowski, 2011)Theoretical Bore Force (Robertson and Packowski, 2011)

p=2Fb/hp

3
2

3
1

)( jjr hvgh




 Flow velocity = 6.5 m/s
 Static water height = 0.5 m
 Bore height = 6.0 m
 Calculated rejected bore height = 5.1 m
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 Comparison with Different Bore Pressures 
used in Tsunami Standards
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 There are tools available for reliable structural load 
characterization of different loading conditions

 LiDAR was a useful tool in capturing structural post-
tsunami deformations along with other field survey 
techniques.
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