Categorization of Damage to Buildings Caused by the 3.11 Tsunami

Damage to RC Buildings and Steel Buildings is discussed in order to develop structural design methods for Tsunami Evacuation Buildings

Hiroshi FUKUYAMA

Director, Dept. of Structural Engineering, Building Research Institute (BRI), JAPAN

Damage to RC Buildings

Most of RC buildings survived without any structural damage

 However, severe damage were observed in a part of RC Buildings

Damage to RC buildings (1) Total collapse

Damage to RC buildings (2) Collapse of 1st story

Damage to RC buildings (3) Overturning

Refrigerated warehouse got over the fence

Mechanism of overturning

Damage to RC buildings (3) Overturning

Trapped air below floor slab caused buoyant force

The building was submerged completely

Damage to RC buildings (4) Failure of walls

A filtration plant

Damage to RC buildings (5) Scour

Very strong stream was generated around the corner of the building, resulted in large holes on the ground

Damage to RC buildings (5) Scour & Tilting

In case of mat foundation

Damage to RC buildings (6) Sliding

Tsunami pressure

Overturning, Sliding & Washing away

Overturning, Sliding & Washing away

Survived

Overturned

Partially damaged

Overturned (upset)

Damage to RC buildings (7) Debris impact

Damage to Steel Buildings

Damage to Steel buildings (1) Failure of exposed column

Rupture of anchor bolt, base-plate or welding part between column and base-plate

Damage to Steel buildings (2) Failure of column top connection

Damage to Steel buildings (3) Overturning

Exterior finishing was survived
Then large tsunami load and buoyancy happened

Overturning due to rupture of anchor bolt and buckling of 1st story columns

Damage to Steel buildings (4) Washed away of finishing

Damage to Steel buildings (5) Large residual deflection

Damage to Steel buildings (6) Collapse of 1st story

Damage to Steel buildings (7) Deformation of columns due to tsunami pressure and/or debris impact

Summary

Damage pattern to buildings are categorized

< RC Buildings >

- Total collapse
- Collapse of 1st story
- Sliding
- Washed away
- Overturning
- Debris impact
- Tilting due to scour
- Failure of walls

< Steel Buildings >

- Collapse of 1st story
- Failure of column base
- Failure of column top connection
- Washed away of finishing
- Overturning
- Debris impact
- Large residual deflection

Based on the categorization, structural design methods of tsunami evacuation buildings were discussed

Design target

1) Not to collapse:

Tsunami load on each floor will never be higher than the lateral capacity

2) Not to overturn:

Overturning moment by tsunami load will never be higher than the resistance moment considering buoyancy

3) Not to slide:

Lateral force will never be higher than the friction of the foundation or the lateral capacity of the piles

Design items

- Design for preventing failure of exterior elements (walls & columns)
- Design for debris impact
- Design for scour

Thank you for your attention

