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Archetype building layout
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Archetype buildings
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Lateral-force resisting system
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Non-Ductile Moment Frame with beam-to-column 
connections not specifically detailed for seismic resistance.

• Element: zeroLength
• Behavior: Pinching4, MinMax with envelope/hysteresis 

parameters based on FEMA P-440A, ASCE 41, and FEMA 355D.
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Lateral-force resisting system
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Ductile Special Moment Frame (SMF) designed for 
Seismic Design Category (SDC) Dmin or SDC Dmax. 

• Element: zeroLength
• Behavior: Bilin with envelope/hysteresis parameters based on 

regression analysis of NEES database (Lignos and Krawinkler
2011)
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Gravity framing system
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Shear tab beam-to-column connection.
• Element: zeroLength
• Behavior: Pinching4, MinMax with envelope/hysteresis 

parameters based on test data (Liu Astaneh-Asl 2000) and 
corresponding analytical models (Liu Astaneh-Asl 2000; Wen and 
Shen 2013).

(from JCSR, Wen et al. 2013)
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Performance assessment

15th U.S.-Japan Workshop on the Improvement of Structural Engineering and Resiliency 7

Boston 3%

New York 2%San Francisco 9%

Serviceability: Western United States

25-year MRI Sa(T=1.0s) 
as a percent of MCE. 1/100

1/63

1/40

1/25

1/16

1/10

1/6

1/4

1/2.5

1/1.6

1/1100%

63%

40%

25%

16%

10%

6.3%

4%

2.5%

1.6%

1%



Performance assessment

15th U.S.-Japan Workshop on the Improvement of Structural Engineering and Resiliency 8

Boston 8%

New York 7%San Francisco 21%

1/100

1/63

1/40

1/25

1/16

1/10

1/6

1/4

1/2.5

1/1.6

1/1

Serviceability: Central and Eastern United States

72-year MRI Sa(T=1.0s) 
as a percent of MCE.

100%

63%

40%

25%

16%

10%

6.3%

4%

2.5%

1.6%

1%



Serviceability-level performance
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Component Fragilities
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Quantification of resilience
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Serviceability-level performance
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Non-ductile Moment Frame



Serviceability-level performance
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SMF Designed for SDC Dmin
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SMF Designed for SDC Dmin



Serviceability-level performance
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8-story SMF Designed for SDC Dmin

• Repair Costs: Most repair costs were caused by damage to the 
gypsum wall partitions.  The reserve lateral strength from the 
gravity framing reduced repair costs by 22%.

• Repair Time: The time required for repairs is correlated to repair 
costs, and was dominated by repair time for the gypsum wall 
partitions.  Interestingly, including the gravity framing actually 
increased the probable repair time for some components (chiller).
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8-story SMF Designed for SDC Dmin

Moment frame only (MF) With reserve strength (MF+GF)
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8-story SMF Designed for SDC Dmin

• Repair Costs: Most repair costs were caused by damage to the 
gypsum wall partitions.  The reserve lateral strength from the 
gravity framing reduced repair costs by 22%.

• Repair Time: The time required for repairs is correlated to repair 
costs, and was dominated by repair time for the gypsum wall 
partitions.  Interestingly, including the gravity framing actually 
increased the probable repair time for some components (chiller).

• Unsafe placards: Placarding was caused due to prefabricated 
steel stair systems with steel treads and landings without seismic 
joints.  Reserve strength reduced this from 9% to 3%.
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SMF Designed for SDC Dmax



Design-level performance
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SMF Designed for SDC Dmax
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SMF Designed for SDC Dmax



Design-level performance
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8-story SMF Designed for SDC Dmax

• Repair Costs: Most repair costs were caused by damage to the 
gypsum wall partitions, as before, but there were other significant 
contributions to repair costs, such as bolted shear tab gravity 
connections, and unanchored chiller and air handling units. The 
reserve lateral strength from the gravity framing reduced repair 
costs by 13%.

• Repair Time: Repair time was dominated by gypsum wall 
partitions, but many other fragility performance groups were 
significant contributors. The reserve lateral strength from the gravity 
framing reduced the predicted mean repair time by 6 days (4%).



Design-level performance
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8-story SMF Designed for SDC Dmax

• Unsafe placards: Placarding was mostly caused due to the 
prefabricated steel stair systems without seismic joints, but there 
were several other components that contributed to the probability of 
unsafe placards.  Reserve strength slightly reduced the probability, 
with most improvement in reducing placard associated with 
unbraced fire sprinkler water piping.



Resilience contour plots
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Non-ductile Moment Frame
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SMF Designed for SDC Dmin
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SMF Designed for SDC Dmin
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SMF Designed for SDC Dmax
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Design-level resilience
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SMF Designed for SDC Dmax
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SMF Designed for SDC Dmax
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SMF Designed for SDC Dmin
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Conclusions
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Reserve Strength Reserve lateral strength provided by 
shear tab connections was generally a significant factor in 
improving resilience, especially for archetype buildings with 
non-ductile moment frames or SMF designed for SDC Dmin.

Resiliency Contour Plots Useful to visualize the tradeoff 
between improving robustness (reducing loss) and 
speeding recovery time, and to identify optimal path for 
developing resilience.
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