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important points of this presentation

« current seismic design does not always work
well for shear-wall structures

 proposed displacement-based seismic design
works well for shear wall structures

= produces structures that behave reliably in
strong earthquakes

s more consistent and more transparent than
current seismic design
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contents of presentation

 review and examine current seismic design of
masonry shear wall structures

- develop proposed displacement-based design

» check and validate displacement-based seismic
design

4 of 24



current force-based design approach ...

- determine seismic design category (SDC) based
on geographic location and soill

» select from ASCE 7 list of permitted structural
systems

= special, intermediate reinforced masonry shear
walls

= prescribed detailing for each wall segment
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.. current force-based design approach

» based on structural system, assign seismic design
factors (R, C,, £2,)
= design for elastic forces divided by R
= design for elastic displacements multiplied by C,

= design elements that must remain elastic for elastic
forces divided by R and multiplied by €,

Special RM Load Bearing Shear Walls 31/12 21/2
Intermediate RM Load Bearing Shear Walls 31/2 21/4 21/2
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force-based design does not always work well

- final behavior is not always consistent with design intent

easy to design _ _ _
may be impossible to design

rationally

weakly coupled walls irregular openings

- ductility required by R and implied by detailing may not
be available

a low-rise
structure in SDC D
will not achieve
high ductility
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force-based design requirements are not reliable

- emphasis on forces instead of deformations is

misguided
_ shear ___forces do not
deformation indicate damage
stiffness force

base shear > or I
i
|

deformations
indicate damage

stiffness

displacement (deformation)

- force-based principle is not valid for short-period
structures
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better desigh approaches?

- modified force-based
= R-factor accounts for actual system behavior

base shear

structural period next

‘ ductility demand ,~ generation of
aspect ratio -factor

plan layout .

- displacement-based
= emphasizes deformations
= designer determines deformation limits

target <>

deformation limit

displacement;

-

drift limits

hazard levels
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5 major tasks in this research .

- task 1- examined the
behavior masonry buildings
designed using force-
based procedures

Displacement Response

Stepl: Define Seismic Hazard

I_l

- task 2- developed i %% LR
displacement-based T

Step3: Propose Initial Design. Conduct
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. . . ) major tasks in this research

» task 3- conducted cyclic-load
tests on masonry wall
segments at UT Austin and
WSU
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- task 4- improved analytical
tools

Lateral
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- task 5- validated displacement-
based seismic design for
masonry
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248 in. (6.30 m) 248in.(6.30 m)

248in. (6.30 m)

examine force-based procedures

« used shake-table tests to examine overall and local
behaviors of masonry buildings

- evaluate the performance of special reinforced masonry

walls
» assess the failure

288 in. (7.31 m) 96 in. (2.43 m) 288in. (7.31m)

mechanism of a real wall system
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plan view of prototype building

3-story specimen, UCSD-NEES
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» specimen was subjected to an extended series of

3-story specimen behaved well

ground motions

Imperial
Valley 1979
El Centro

Imperial
Valley 1940
El Centro
#5

Northridge

1994
Sylmar

Chi Chi
1999

Ground Scale Level of
Motion Factor | Excitation

20%
45%
90%
120%
150%
180%

250%

300%

125%

160%

150%

150 % Chi Chi 1990 ( 2 MCE )

DE

MCE
above MCE

MCE

1.25 MCE

2.0 MCE

Design Earthquake (DE),10% in 50 years
Maximum Considered Earthquake (MCE), 2% in 50 years
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develop displacement-based design

« based on achieving specified deformation limits under
selected seismic hazard levels

- fundamental difference between force-based and
displacement-based design
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technical basis for displacement-based method

- select a reasonable target mechanism for each hazard level

capacity
,7 curve

<>

/

base shear

target

displacement

I I
[ T T T |
[ T T T 1

4>
roof displacement

- identify the inelastic deformation demands and adjust
strength or detailing
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fundamental steps

Displacement I-{esponse
Spectra

Stepl: Define Seismic Hazard

v

Step2: Define Design Target Local
Deformation Ratios and Target Drifts

A 4

Mechanism with Flexural or
Shear Hinging

Step3: Propose Initial Design, Conduct
Inelastic Analysis, and Develop Design
Mechanism
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Step 6: Compute Required Base Shear,
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Step 7: Predict Actual Base Shear,
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Corresponding Reinforcement
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Step 8: Verify Base
Shear

Step 9: Complete Structural Detailing

Not Good

Modify
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conduct cyclic-load test of shear-walls

 designed and conducted cyclic-load tests of 41 masonry
shear-walls at UT Austin and WSU
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improved analytical tools

- predict nonlinear resistance and failure behavior
- predict local and global responses and deformations
- different modeling approaches were considered

= nonlinear “macro” models, PERFORM 3D “General
Wall Element”
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validation of displacement-based design

- application of proposed displacement-based design and
analytical tool

- a full-scale two-story reinforced masonry shear-wall
system, complex geometry of openings
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select seismic hazard levels and target drifts

deformation limits :
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shake table test of 2-story specimen

0 speC|men was subjected to

ground motions
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shake-table test of specimen above MCE

« specimen successfully resisted repeated ground motions
up to MCE
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measured vs. predicted responses

- walls exceeded expected deformation capacities

Wall W - 3 was shear -

Wall W -1 was flexure dominated one way, flexure -
- dominated , exceeded dominated the other way,
190 drift ratio exceeded 1% drift ratio

Wall W - 2 was shear -
dominated , exceeded 2%
drift ratio
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important points of this presentation

» current force-based seismic design does not
always work well for reinforced masonry shear-
wall structures

- proposed displacement-based seismic design
works for masonry shear wall structures
s It produces structures that behave reliably in
strong earthquakes
s 1t Is more consistent and more transparent than
current force-based seismic design
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