Projects

 

      

ATC-15-17
18th U.S.-Japan-New Zealand Workshop
on the 
Improvement of Structural Engineering and Resilience

December 2-4, 2024

Hilton San Diego Bayfront
1 Park Boulevard
San Diego, California 

   
 

The 18th U.S.-Japan-New Zealand Workshop will be held on December 2-4, 2024, at the Hilton San Diego Bayfront Hotel.

Purpose. Sponsored by the Applied Technology Council (ATC), the Japan Structural Consultants Association (JSCA), the New Zealand Centre of Research Excellence (QuakeCoRE), and the New Zealand Society for Earthquake Engineering (NZSEE), this Workshop is intended to bring together leading seismic engineering researchers and practitioners to discuss and develop recommendations for improved community resilience based on topics related to current state-of-practice, innovative engineering solutions, and emerging resilience technologies. The focus of the Workshop will be determined by the abstracts submitted for consideration.

Workshop Program. The workshop program will be designed around participation from practicing engineers, researchers, planners, policy makers, and other risk reduction specialists. The workshop format will include technical presentations and discussions. The workshop schedule is expected to be as follows:

  • Monday, December 2: 8:30 am-5:00 pm
  • Tuesday, December 3: 8:30 am-5:00 pm
  • Wednesday, December 4: 8:30 am-12:00 pm
  • Optional social and networking events are under development.

Important Dates. Technical papers, up to 8 pages in length, are due to ATC by November 15, 2024 via email to This email address is being protected from spambots. You need JavaScript enabled to view it. or upload to https://cloud.atcouncil.org/s/LrcbW6s9s485PKX for publication in the Workshop Proceedings using the provided Microsoft Word template. The official language of the Workshop is English. All participants are required to register for the event.

Important Dates
 Event  Date
Registration Closes  November 1, 2024
Hotel Reservations  November 8, 2024
Papers Due  November 15, 2024
Workshop Dates  December 2-4, 2024

 

 

Workshop Proceedings. Papers presented at the Workshop will be published in preprints distributed at the Workshop. The results of technical discussions, findings and policy recommendations will be distributed after the Workshop.

Hotel Reservations. Hotel reservations have a guaranteed rate of USD $229 per night at the Hilton San Diego Bayfront, valid during the event dates, as well as three days pre- and post-event. Please use this link (or URL:  https://book.passkey.com/event/50809171/owner/71485/home) to make your reservation, or call Hilton Hotels toll-free 1-888-446-6677 or direct 1-619-564-3333 and mention the group code ATC.

 

Sponsored by:

   
Applied Technology Council Japan Structural
Consultants Association
New Zealand Society for
Earthquake Engineering

 

 Questions? Please contact the Applied Technology Council by sending email to This email address is being protected from spambots. You need JavaScript enabled to view it. 

Print

Project Title: Technical Assistance, Training and Product Development

Client: Federal Emergency Management Agency

Purpose: To develop and maintain educational courses on earthquake mitigation and related training materials, to deliver training courses/webinars on behalf of FEMA, and to participate in national conferences to share information about FEMA reports. This project also supports the development and update of FEMA technical and non-technical guidance products and management of the National Earthquake Technical Assistance Program (NETAP). 

This project has produced the following reports:

FEMA P-530Earthquake Safety at Home

FEMA P-1024/RA2South Napa Earthquake Recovery Advisory: Earthquake Strengthening of Cripple Walls in Wood-Frame Dwellings, Second Edition

FEMA P-1092Guidelines for Performance-Based Seismic Design of Tall Buildings, Pacific Earthquake Engineering Center Tall Buildings Initiative, Version 2.01

FEMA P-2055Post-disaster Building Safety Evaluation Guidance –Report on the Current State of Practice, including Recommendations Related to Structural and Nonstructural Safety and Habitability

FEMA P-2055-1, Guidance for Accelerated Building Reoccupancy Programs

FEMA P-2055-2, Recommendations for Cordoning Earthquake-Damaged Buildings

FEMA P-2090/ NIST SP-1254 Special ReportRecommended Options for Improving the Built Environment for Post-Earthquake Reoccupancy and Functional Recovery Time

ATC-137-2Proceedings: FEMA-Sponsored Summit on Unreinforced Masonry Buildings in Utah

FEMA P-807-1, Guidance and Recommendations for the Seismic Evaluation and Retrofit of Multi-Unit Wood-Frame Buildings with Weak First Stories

FEMA P-232, Homebuilders’ Guide to Earthquake-Resistant Design and Construction

 

 

 

Print

 

Three Decades of Practical Collaboration by U.S. and Japanese
Building Design Professionals:  A Retrospective
by

Christopher Rojahn, Director Emeritus
Applied Technology Council
Redwood City, California  USA

Summary.  This paper provides an overview of the format, participants, and outcomes of a series of fifteen bi-lateral US-Japan workshops conducted since March 1984 by the Applied Technology Council of the United States and the Japan Structural Consultants Association to provide a forum for the rapid exchange of ideas and information for the advancement of structural engineering practice.  Participants have included leading design practitioners and academic researchers from Japan, the United States, and other Pacific Rim countries.  Of the 378 papers presented in the workshop series, 87% addressed topics related to earthquake engineering of buildings, including the seismic design of new buildings, seismic protection systems, pre-earthquake seismic evaluation and retrofit of existing buildings, and assessment and repair of earthquake-damaged buildings; the remaining 13% covered other topics in structural engineering, including non-technical issues such as engineering education, qualification, responsibilities, and licensing. The author played a key role in organizing all fifteen workshops.

Introduction.  Since March 1984, the Applied Technology Council (ATC) of the United States and the Japan Structural Consultants Association (JSCA) have carried out a cooperative United States-Japan program for the improvement of structural design and construction practices.  To date (January 2016), the program has consisted of a series of fifteen U.S.-Japan workshops, held at 2-to-3-year intervals, at locations convenient to participants from both countries. Workshop locations have included Tokyo, Kobe, San Francisco, San Diego, Hawaii, and Victoria, British Columbia.  The primary purpose of the program has been to provide a forum for the rapid exchange of ideas and information for the advancement of structural engineering practice.  Participants have included leading design practitioners and academic researchers from Japan, the United States, and other Pacific Rim countries.

The workshops have been sponsored and organized by the Applied Technology Council, a nonprofit California Corporation, founded in 1973, that aims to develop and promote engineering resources and applications to mitigate the impacts of earthquakes and other natural and manmade hazards on the built environment.  ATC activities include the planning and conduct of seminars, conferences, workshops, webinars, and other meetings to document the state of structural engineering practice and to identify research needs.  The U.S.-Japan program discussed in this paper is ATC’s longest running workshop series.  From December 1981 to May 2015, this author[1] served as ATC’s Executive Director, with lead responsibility of organizing and managing the U.S. half of the U.S.-Japan workshop series.  

The concept for the program was suggested in the early 1980s by Roland L. Sharp, a consulting Structural Engineer from California, and Masakau Ozaki, and a Professor within the Architectural Engineering Department of Chiba University in Japan.  In the early years of the workshop series, C. Rojahn and R. Sharpe served as Workshop Co-Chairs, and in recent years, these roles have been carried out by C. Rojahn and Kit Miyamoto, a practicing Structural Engineer from Sacramento, California. 

Workshop Participants and Programs.  To date, the average attendance of a typical workshop has been 42 people, with participants presenting an average of 25 technical papers (see Table 1).  The workshop programs have typically followed the same pattern:  two days of technical presentations by workshop participants in plenary sessions, followed by a half day of “working group” discussions on topics of special interest to workshop participants.  In a few instances, such as in Tokyo in 1988, the plenary sessions were opened to the profession at large.  Program topics for each workshop have been selected by Joint U.S.-Japan Steering Committees (appointed for each workshop), followed by a “Call for Abstracts” issued to JSCA members, ATC Subscribers, individuals identified by the Steering Committee, and organizations known to be interested in the mitigation of impacts from earthquakes and other natural and man-made hazards, including organizations in other Pacific Rim countries.  The objective of the calls has always been to broaden participation as much as possible.  Papers presented at each workshop have been selected from submitted abstracts, and written versions of the papers have been published in workshop preprints distributed at the outset of each workshop.  With the exception of a small number of travel grants provided by ATC to U.S. participants to attend workshops held in Japan, participants, or their employers, have paid their own travel and hotel expenses, as well as a workshop registration fee to cover the costs of meeting room accommodations, meals, refreshments, and workshop handouts (e.g., workshop preprints). 

Technical Paper Topics.  To date, 378 technical papers have been presented at the workshops and printed in the Workshop Preprints/Workshop Proceedings.  Of these, 328 papers (87%) have addressed various topics associated with earthquake engineering of buildings, including seismic design of new buildings, innovative use of seismic isolation, passive energy dissipation, and active control (collectively known as seismic protection systems), pre-earthquake seismic evaluation and retrofit of existing buildings, postearthquake assessment and repair of damaged buildings, and other related topics (see Figure 1).  The remaining papers (13%) have addressed a wide variety of topics in structural engineering, including (1) engineering education, qualification, responsibilities, and licensing, (2) wind engineering, (3) design and performance of buildings impacted by tsunami, (4) design and performance of buildings impacted by explosion, (5) resiliency and rapid recovery after disasters, (6) seismic design and performance of nuclear reactors, and (7) risk and reliability analysis.

Lasting Contributions and Future Considerations.  The technical presentations and working group discussions at the fifteen U.S.-Japan workshops held to date have yielded high-caliber, state-of-the-art technical information and insights to workshop participants and others who have sought available information on the ATC website (preprints of recent workshop papers) and in ATC-published reports, including published Proceedings for the first six workshops.  The technical presentations and discussions authored by workshop members have identified topics and issues which have drawn attention and heightened scrutiny by the profession.  One prominent example is a paper by Lawrence D. Reaveley and Guy J. P. Nordenson in the 4th workshop in 1990  entitled, “Acceptable Damage in Low and Moderate Seismicity Areas,” that underscored the importance of addressing large, in-frequent earthquakes in places like the intermountain region of the United States (e.g., Utah) and heralded the decision in the United States to consider a much longer return period (2475 years, which corresponds to ground motions having a 2% probability of exceedance in 50 years, instead of 475 years, which corresponds to a 10% probability of exceedance in 50 years) in seismic criteria for the retrofit of existing buildings (and later the design of new buildings).  This contribution was monumental.

In the future, workshop participants and design professionals in Japan and the United States will likely benefit from technical papers which explore the differences between Japanese and American seismic design practice,  including the reasoning behind the use of larger shear coefficients in Japan (as documented in early workshop case studies), updates to those criteria, and current code criteria in Japan regarding the estimation of damping in real structures -- a largely ignored parameter in U.S. design practice.

Selected Previous Workshops
Project No. Title Location
ATC-15-16 17th U.S.-Japan-New Zealand Workshop on the improvement of Structural Engineering and Resilience Queenstown, New Zealand
ATC-15-15 16th U.S.-Japan-New Zealand Workshop on the improvement of Structural Engineering and Resiliency Nara, Japan
ATC-15-14 15th U.S.-Japan Workshop on the improvement of Structural Engineering and Resiliency Kohala Coast, Hawaii
ATC-15-13 14th U.S.-Japan Workshop on the improvement of Structural Engineering and Resiliency Maui, Hawaii

[1] Christopher Rojahn holds an Engineer’s Degree and a Masters Degree in Civil (Structural) Engineering from Stanford University and a Bachelor of Science Degree in Civil Engineering from Bucknell University.  Prior to joining ATC, he served for three years in the Officer Corps of the National Oceanic and Atmospheric Administration (NOAA) and for 10 years as a Research Civil Engineer at the U.S. Geological Survey (USGS) in Menlo Park, California.  During his 34-year tenure as ATC’s Executive Director, he served as Principal Investigator/Project Executive/Project Manager on more than 50 major ATC projects.  His career also includes memberships and officer positions in various professional associations, including the Earthquake Engineering Research Institute (Board Secretary), California Earthquake Safety Foundation (Board Chair), and Structural Engineers Association of Northern California (Honorary Member).  Mr. Rojahn has testified before the U. S. Congress and advised the White House Office of Science and Technology Policy on issues relating to earthquake hazard mitigation.  He has also served on oversight panels of various federally sponsored earthquake engineering research programs, including nine years on the Board of Directors/Governance Board of the National Science Foundation (NSF) Network for Earthquake Engineering Simulation (NEES) Program (most recently as Board Chair).  

 

Print

ATC-126, COMMUNITY RESILIENCE OF LIFELINE SYSTEMS

 

Client: National Institute of Standards and Technology (NIST)

Status: Completed on March 29, 2016

PROJECT BACKGROUND

In 2014, ATC completed the ATC-102 project funded by the National Institute of Standards and Technology (NIST).  This project resulted in NIST GCR 14-917-33 Report, Earthquake Resilient Lifelines: NEHRP Research, Development, and Implementation Roadmap, which identified the need for assessing societal expectations of acceptable lifeline performance levels and restoration times at the community level as a high-priority research and development topic.

In response to this high-priority need, the NIST-funded ATC-126 Project was initiated in September 2014 to assess current societal expectations of acceptable lifeline performance levels and restoration timeframes that are informed by the phases of response and recovery, determining those that are hazard-independent and those that are specific for seismic (including tsunami), wind (including hurricane and tornado), flood, snow/ice, and wildfire hazard events.

PROJECT DESCRIPTION

The ATC-126 project team developed the NIST CGR 16-917-39 report, Critical Assessment of Lifeline System Performance: Understanding Societal Needs in Disaster Recovery, which focuses on overarching critical societal considerations and system interdependencies of the following key lifelines: electric power, natural gas and liquid fuel, telecommunications, transportation, and water and wastewater systems. The report discusses the social institutions and societal needs that should drive lifeline system performance levels and recovery timeframes. The report identifies important gaps between expected lifeline system performance and societal needs through the evaluation of performance and impacts during past events, as well as an assessment of key guidelines, standards, and performance criteria that govern and shape the design, construction, operation, and management of lifeline systems. Recommendations particular to lifeline standards, research, modeling, and lifeline system operations are included in the report.

The ATC-126 project is part of a larger effort to help transition from current utility-specific crisis management practices to a more integrated and consistent approach to interdependent lifeline systems performance and community resilience enhancement. The findings from this report are intended to inform other resilience efforts.


PROJECT PARTICIPANTS

NIST
Therese (Terri) P. McAllister, NIST Technical Point of Contact
Steven L. McCabe, Contracting Officer’s Representative

ATC Management
Jon A. Heintz, Program Manager
Christopher Rojahn, Project Manager
Veronica Cedillos, Associate Project Manager

Project Technical Committee
Laurie Johnson, Project Director and Lead Editor
Thomas D. O’Rourke, Project Co-Director
Stephanie Chang
Craig A. Davis
Leonardo Dueñas-Osorio
Ian N. Robertson
Henning Schulzrinne
Kathleen Tierney 

Project Review Panel
Bruce Ellingwood
Timothy J. Lomax
Douglas J. Nyman
Dennis Ostrom
Jon M. Peha
Kent Yu (ATC Board Representative)

 

Print

ATC Project No. Project Title Funding Agency
ATC-15-13

14th U.S.-Japan Workshop on the Improvement of Structural Design and Construction Practices

Applied Technology Council (ATC)
ATC-15-14

15th U.S.-Japan Workshop on the Improvement of Structural Engineering and Resiliency

Applied Technology Council (ATC)
ATC-15-15 16th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resiliency Applied Technology Council (ATC)
ATC-15-16 17th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resiliency Applied Technology Council, Japan Structural Consultants Association, New Zealand Centre of Research Excellence (QuakeCoRE), and New Zealand Society for Earthquake Engineering
ATC-20

Procedures for Postearthquake Safety Evaluation of Buildings

Applied Technology Council (ATC)
ATC-20-1
Bhutan
Development of Field Manual: Postearthquake Safety Evaluation of Buildings, Bhutan Edition World Bank’s Global Facility for Disaster Reduction and Recovery (GFDRR)
ATC-45

Field Manual: Safety Evaluation of Buildings After Wind Storms and Floods

Applied Technology Council (ATC)
ATC-52-2
(CAPSS)

Community Action Plan for Seismic Safety (CAPSS) Project

San Francisco Department of Building Inspection
ATC-58 Series Development of Next Generation Performance-Based Seismic Design Procedures for New and Existing Buildings Federal Emergency Management Agency
ATC-60

SEAW Commentary on Wind Code Provisions

Structural Engineers Association of Washington
ATC-63-1

Quantification of Building System Performance and Response Parameters - Development and Beta Testing of Component Equivalency Methodology

Federal Emergency Management Agency
ATC-64

Development of Design and Construction Guidance for Special Facilities for Vertical Evacuation from Tsunamis

Federal Emergency Management Agency
ATC-66 Series NETAP (National Earthquake Technical Assistance Program) Training Federal Emergency Management Agency
ATC-67-4

Rapid Observation of Vulnerability and Estimation of Risk

Federal Emergency Management Agency
ATC-69 Series

Development of FEMA E-74, Reducing the Risks of Nonstructural Earthquake Damage - A Practical Guide

Federal Emergency Management Agency
ATC-71

Update Seismic Rehabilitation Guidance Program Definition and Guidance Development

Federal Emergency Management Agency
ATC-71-1

Development of FEMA P-807, Seismic Evaluation and Retrofit of Multi-Unit Wood-Frame Buildings With Weak First Stories

Federal Emergency Management Agency
ATC-71-2

Planning and Conduct of an Earthquake Building Performance Rating System Workshop

Federal Emergency Management Agency
ATC-75

Development of Industry Foundation Classes (IFCs) for Structural components

Charles Pankow Foundation
ATC-76-1 Quantification of Building System Performance and Response Parameters. This task has been completed and produced the NIST GCR 10-917-8 report, Evaluation of the FEMA P-695 Methodology for Quantification of Building Seismic Performance Factors. National Institute of Standards and Technology
ATC-76-5 Integration of Collapse Risk Mitigation Standards and Guidelines for Older Reinforced Concrete Buildings into National Standards - Phase I. This task has been completed and produced the NIST GCR 10-917-7 report, Program Plan for the Development of Collapse Assessment and Mitigation Strategies for Existing Reinforced Concrete Buildings. National Institute of Standards and Technology
ATC-76-6 Improved Nonlinear Static Seismic Analysis Procedures - Multiple-Degree-of-Freedom Modeling. This task has been completed and produced the NIST GCR reports, 10-917-9, Applicability of Nonlinear Multiple-Degree-of-Freedom Modeling for Design, and Supporting Documentation. National Institute of Standards and Technology
ATC-78 Series Identification and Mitigation of Nonductile Concrete Buildings Federal Emergency Management Agency
ATC-79/79-1

Technical Assistance and Documentation of Case Studies, FEMA Guidelines for the Design of Structures for Vertical Evacuation From Tsunamis

Federal Emergency Management Agency
ATC-81

Development of Industry Foundation Classes (IFCs) for Structural Concrete Components - Strategic Plan

ACI Foundation
ATC-86

Environmental Benefits of Retrofitting

Federal Emergency Management Agency
ATC-99

Methodology to Assess and Verify the Seismic Capacity of Low-Rise Buildings

Federal Emergency Management Agency
ATC-99-1

Methodology to Assess and Verify the Seismic Capacity of Low-Rise Buildings

Federal Emergency Management Agency
ATC-102 Development of an Earthquake-Resilient Lifelines: NEHRP Research and Implementation Roadmap National Institute of Standards and Technology
ATC-103 Development of Technical Brief on Structural Design Issues – Seismic Design of Steel Special Concentrically Braced Frame Systems. This task has been completed and produced the NIST GCR 13-917-24 report, Technical Brief No. 8, Seismic Design of Steel Special Concentrically Braced Frame Systems: A Guide for Practicing Engineers. National Institute of Standards and Technology
ATC-106-1 Seismic Behavior and Design of Deep, Slender Wide-Flange Structural Steel Beam-Column Members: Phase 2 Experimental Evaluation National Institute of Standards and Technology
ATC-109 Building Safety Evaluation after the February 22, 2011 Christchurch, New Zealand Earthquake: Observations by the ATC Reconnaissance Team Applied Technology Council (ATC) and
ATC Endowment Fund
ATC-110
(CEA 5/CEA 6)
Delivery of FEMA P-50/P-50-1 Training for the California Earthquake Authority California Earthquake Authority
ATC-111 Development of Technical Brief on Structural Design Issues – Special Reinforced Masonry Shear Walls. This task has been completed and produced the NIST GCR 14-917-31 report, Technical Brief No. 9, Seismic Design of Special Reinforced Masonry Shear Walls: A Guide for Practicing Engineers National Institute of Standards and Technology
ATC-112 Development of Technical Brief on Structural Design Issues – Wood Light-Frame Structural Diaphragm Systems. This task has been completed and produced the NIST GCR 14-917-32 report, Technical Brief No. 10, Seismic Design of Wood Light-Frame Structural Diaphragm Systems: A Guide for Practicing Engineers National Institute of Standards and Technology
ATC-114 Development of Accurate Models and Efficient Simulation Capabilities for Collapse Analysis to Support Implementation of Performance Based Seismic Engineering. This task has been completed and produced four reports: NIST GCR 17-917-45, NIST GCR 17-917-46v1, NIST GCR 17-917-46v2, and NIST GCR 17-917-46v3 National Institute of Standards and Technology
ATC-115 Development of a Roadmap for the use of high-strength reinforcement in reinforced concrete design. This task has been completed and produced the ATC-115 report, Roadmap for the Use of High-Strength Reinforcement in Reinforced Concrete Design. Charles Pankow Foundation
ATC-116 Series Solutions to the Issues of Short-Period Building Seismic Performance Federal Emergency Management Agency
ATC-118 Development of a Emergency Power for Critical Facilities Guidance Publication. This task has been completed and produced the FEMA P-1019 report, Emergency Power for Critical Facilities: A Best Practices Approach to Improving Reliability. Federal Emergency Management Agency
ATC-119 Series Seismic Safety and Engineering Consulting Services for the Earthquake Safety Implementation Program (ESIP) City and County of San Francisco City and County of San Francisco
ATC-120 Series Seismic Analysis and Design of Nonstructural Components and Systems National Institute of Standards and Technology
ATC-121 Development of Technical Brief on Structural Design Issues – Steel Buckling-Restrained Braced Frames. This task has been completed and produced the NIST GCR 15-917-34 report, Technical Brief No. 11, Structural Design Issues: Seismic Design of Steel Buckling-Restrained Braced Frames, A Guide for Practicing Engineers National Institute of Standards and Technology
ATC-122 Series Reducing the Risk to our Schools from Natural Hazards and Improving the Safety of Our Children. This task has been completed and produced the report, FEMA P-1000, Safer, Stronger, Smarter: A Guide to Improving School Natural Hazard Safety Federal Emergency Management Agency
ATC-123 Series Improving Seismic Design of New Buildings Federal Emergency Management Agency
ATC-124 Series Update of Seismic Retrofitting Guidance Federal Emergency Management Agency
ATC-125 Recovery Advisories for the South Napa Earthquake Federal Emergency Management Agency
ATC-126 ATC Project, Community Resilience of Lifeline Systems, produced the NIST CGR 16-917-39 report, Critical Assessment of Lifeline System Performance: Understanding Societal Needs in Disaster Recovery National Institute of Standards and Technology
ATC-127 User-Needs Workshop for the National Seismic Hazard Mapping Project U.S. Geological Survey
ATC-128 Proceedings of Forum on Performance-Based Structural-Fire Engineering: Examples of Current Practice and Discussion on Future Directions Applied Technology Council (ATC) and
ATC Endowment Fund
ATC-129 Development of Updated Standards of Seismic Safety for Existing Federally Owned and Leased Buildings National Institute of Standards and Technology
ATC-130 Updates of NEHRP Seismic Design Technical Briefs 1-3 National Institute of Standards and Technology
ATC-131 Development of Technical Brief on Structural Design Issues: Seismic Design of Cold-Formed Steel Lateral Load Resisting Systems National Institute of Standards and Technology
ATC-132 Practical Guidelines and Training for Ensuring Seismic Safety of Schools in the Republic of Armenia (Report available in English and Armenian) World Bank, Global Program for Safer Schools
ATC-133 Development of Technical Brief on Structural Design Issues: Seismic Design of Precast Concrete Diaphragms produced the NIST GCR 17-917-47 report, NEHRP Seismic Design Technical Brief No. 13, Seismic Design of Precast Concrete Diaphragms, A Guide for Practicing Engineers National Institute of Standards and Technology
ATC-135 Improving the Alternate Rigid-Wall Flexible-Diaphragm Building Design Procedure Federal Emergency Management Agency
ATC-137 Technical Assistance, Training and Product Development Federal Emergency Management Agency
ATC-137-2 Summit on Unreinforced Masonry Buildings in Utah Federal Emergency Management Agency
ATC-139 Investigation of Project 17 Duration Effects ATC Endowment Fund
ATC-141 Reconnaissance Following the September 19, 2017 Puebla Earthquake in Mexico City ATC Endowment Fund
ATC-142 Seismic Performance-Based Assessment of School Infrastructure in the Kyrgyz Republic World Bank
ATC-143 Update of General Guidelines for the Assessment and Repair of Earthquake Damage in Residential Woodframe Buildings and Development of Additional Engineering Guidelines California Earthquake Authority
ATC-144 Soil Structure Interaction Design Guide Federal Emergency Management Agency
ATC-146 Steel Buildings in the Central and Eastern United States Designed for Controlling Wind Loads to Evaluate their Seismic Performance National Institute of Standards and Technology
ATC-147 Computational Models for Large Outdoor Fires Roadmap Workshop National Institute of Standards and Technology
ATC-148 Building Technical Capacity in Central Asia to Design Risk-Informed Public Infrastructure Investments at Scale World Bank
Websites for
Geographic
Based Design
Load Parameters
Websites for Geographic Based Design Load Parameters: Ground Snow Loads and Windspeed. Applied Technology Council (ATC) and
ATC Endowment Fund

Print